Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2312231, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335948

RESUMO

The conduction efficiency of ions in excitable tissues and of charged species in organic conjugated materials both benefit from having ordered domains and anisotropic pathways. In this study, a photocurrent-generating cardiac biointerface is presented, particularly for investigating the sensitivity of cardiomyocytes to geometrically comply to biomacromolecular cues differentially assembled on a conductive nanogrooved substrate. Through a polymeric surface-templated approach, photoconductive substrates with symmetric peptide-quaterthiophene (4T)-peptide units assembled as 1D nanostructures on nanoimprinted polyalkylthiophene (P3HT) surface are developed. The 4T-based peptides studied here can form 1D nanostructures on prepatterned polyalkylthiophene substrates, as directed by hydrogen bonding, aromatic interactions between 4T and P3HT, and physical confinement on the nanogrooves. It is observed that smaller 4T-peptide units that can achieve a higher degree of assembly order within the polymeric templates serve as a more efficient driver of cardiac cytoskeletal anisotropy than merely presenting aligned -RGD bioadhesive epitopes on a nanotopographic surface. These results unravel some insights on how cardiomyocytes perceive submicrometer dimensionality, local molecular order, and characteristics of surface cues in their immediate environment. Overall, the work offers a cardiac patterning platform that presents the possibility of a gene modification-free cardiac photostimulation approach while controlling the conduction directionality of the biotic and abiotic components.

3.
Acta Biomater ; 161: 285-297, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36905954

RESUMO

Materials for craniofacial and orthopedic implants are commonly selected based on mechanical properties and corrosion resistance. The biocompatibility of these materials is typically assessed in vitro using cell lines, but little is known about the response of immune cells to these materials. This study aimed to evaluate the inflammatory and immune cell response to four common orthopedic materials [pure titanium (Ti), titanium alloy (TiAlV), 316L stainless steel (SS), polyetheretherketone (PEEK)]. Following implantation into mice, we found high recruitment of neutrophils, pro-inflammatory macrophages, and CD4+ T cells in response to PEEK and SS implants. Neutrophils produced higher levels of neutrophil elastase, myeloperoxidase, and neutrophil extracellular traps in vitro in response to PEEK and SS than neutrophils on Ti or TiAlV. Macrophages co-cultured on PEEK, SS, or TiAlV increased polarization of T cells towards Th1/Th17 subsets and decreased Th2/Treg polarization compared to Ti substrates. Although SS and PEEK are considered biocompatible materials, both induce a more robust inflammatory response than Ti or Ti alloy characterized by high infiltration of neutrophils and T cells, which may cause fibrous encapsulation of these materials. STATEMENT OF SIGNIFICANCE: Materials for craniofacial and orthopedic implants are commonly selected based on their mechanical properties and corrosion resistance. This study aimed to evaluate the immune cell response to four common orthopedic and craniofacial biomaterials: pure titanium, titanium-aluminum-vanadium alloy, 316L stainless steel, and PEEK. Our results demonstrate that while the biomaterials tested have been shown to be biocompatible and clinically successful, the inflammatory response is largely driven by chemical composition of the biomaterials.


Assuntos
Materiais Biocompatíveis , Titânio , Animais , Camundongos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Titânio/farmacologia , Titânio/química , Aço Inoxidável/química , Polímeros/farmacologia , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Cetonas/farmacologia , Cetonas/química , Ligas/farmacologia , Teste de Materiais , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...